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a b s t r a c t

A discontinuity in a system of ordinary differential equations can create a flow that slides along the dis-
continuity locus. Prior to sliding, the flow may have collapsed onto the discontinuity, making the reverse
flow non-unique, as happens when dry-friction causes objects to stick. Alternatively, a flow may slide
along the discontinuity before escaping it at some indeterminable time, implying non-uniqueness in for-
ward time. At a two-fold singularity these two behaviours are brought together, so that a single pointmay
havemultiple possible futures as well as histories. Two-folds are a generic consequence of discontinuities
in three or more dimensions, and play an important role in both local and global dynamics. Despite this,
until now nothing was known about two-fold singularities in systems of more than 3 dimensions. Here,
the normal form of the two-fold is extended to higher dimensions, where we show that much of its lower
dimensional dynamics survives.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dynamical systems that suffer sharp systemic changes can be
modelled using nonsmooth differential equations. Examples in-
clude the directionality of Coulomb’s friction, and various kinds of
switching in electronic circuits, in models of biological growth, or
in predator–prey interaction; for recent reviews see [1,2] and ref-
erences therein. Switching gives rise to a flow that is smooth ev-
erywhere, except on some hypersurface where its time derivative
is discontinuous.

A discontinuity can have a dramatic effect on the properties
of the flow. While a smooth flow is topologically equivalent to a
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constant flow in a region where it is non-stationary, the same is
not always true at a discontinuity, and this leads to richer local
dynamics. As a result, while dynamics in smooth systems tends
to be organized by stationary points, as in Fig. 1(i), dynamics in
piecewise-smooth systems also depends heavily on tangencies be-
tween a flow and its discontinuity hypersurface, as in Fig. 1(ii)–(iii).
At such tangencies the flow is typically non-stationary.

A local analysis of tangencies can revealmuch about the generic
dynamics and bifurcations associated with discontinuities. The
nearby dynamics can be characterized by a canonical set of equa-
tions – a normal form – possessing the least number of terms nec-
essary for a given tangency to exist. These have been given for
various types of tangency in low dimensions, see for example
[3–5]. In some cases they can be trivially extended to arbitrary di-
mensions by rectifying the flow in the additional dimensions, but
in many cases such an extension is not at all trivial.
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Fig. 1. Simple singularities: (i) a stationary point, (ii)–(iii) tangencies between a
flow and a line of discontinuity (dashed), known as (ii) a visible fold or (iii) an
invisible fold.

Fig. 2. A discontinuity hypersurface has codimension one, folds have codimension
two, and the two-fold has codimension three. As a consequence, the two-fold
singularity generically arises in systems with at least three dimensions. (i) In two
dimensions, pairs of folds do not typically coincide. (ii) In three dimensions, folds
form curves on the discontinuity surface, which can intersect at a two-fold. (iii) In
four dimensions the folds are surfaces and their intersection curve is a two-fold,
here we depict the three dimensional space of the discontinuity surface. Double
arrows indicate motion sliding along the discontinuity surface (in shaded regions).

The key section of this paper concerns the two-fold — a tan-
gencywhose rich local dynamicsmakes its generalization to higher
dimensions particularly challenging, whose structural stability has
long been in question, and for which the transformations to obtain
low dimensional normal forms have been lacking.

The most basic of the tangencies in a piecewise-smooth flow is
a fold, where the flow curves parabolically (is folded) with respect
to the discontinuity hypersurface. Because of the discontinuity the
flow can be tangent to the hypersurface from one side but trans-
verse to it from the other (Fig. 1(ii)–(iii)). At a two-fold singular-
ity (or simply a two-fold), the flow is tangent to the hypersurface
on both sides, as depicted in Fig. 2. The two-fold comes in several
types, eachwith their own generic dynamics. This singularity arose
in the early literature on nonsmooth differential equations [6–8],
and Teixeira [4] highlighted its importance if a substantial theory of
nonsmooth dynamics was to be achieved (and a particularly chal-
lenging case of two-fold is now known as the Teixeira singularity).
The counterintuitivity of its flow has since led to various miscon-
ceptions, particularly regarding its structural stability and attrac-
tivity, which have been largely resolved in low dimensions by an
explicit focus ondynamics [9,10].What remains unclear iswhether
any of the known dynamics is observed in higher dimensions. This
will be addressed here by deriving a normal form for the two-fold
in a general number of dimensions, consistent with those given in
previous literature when reduced to three dimensions. This local
analysis is a first step towards the greater problem of studying the
role that two-fold singularities play in global dynamics in higher
dimensions.

As new dynamical phenomena are associated with this singu-
larity, its potential implications in applications become more in-
triguing. A key feature of the two-fold is that the flow can be
non-unique at the singularity, both in backward and forward time.
Non-uniqueness is well understood to arise in nonsmooth sys-
tems because of sliding, whereby the flow becomes constrained
to evolve along the discontinuity hypersurface. Non-uniqueness in
backward time due to sliding has proven consistentwith switching
phenomena observed in physical, biological, stochastic, and engi-
neering systems; see for example [1,2]. The physical implications
of non-uniqueness in forward time are only beginning to emerge,
but are known to lead to a notion of discontinuity-induced explo-
sions [11–14], a non-deterministic form of chaos [9], and a nons-
mooth analogue of canards related to the loss of hyperbolicity of
critical manifolds in singularly perturbed systems [15].

In Sections 2–3, the standard description of dynamics at a
discontinuity is summarized (using a slightly unconventional but
effective notation). The two-fold is defined and its normal form is
given in Section 4, extending previous results to n-dimensions. In
Section 5 we collect elements of the known classification of two-
folds which, through Theorem 2 in Section 4, extend immediately
into higher dimensions. Extensions to the theory are suggested in
Section 6, and the geometry underlying an important quantity in
the classification is given in Appendix A.

2. Dynamics at a discontinuity

Throughout the paper we use the following notation (intro-
duced in [16]). We are concerned only with small regions in which
the discontinuity surface is smooth, so we define it as the zero set
of a smooth function σ(x) : Rn

→ R. We use the symbol ∂t+ to de-
note the Lie derivative operator along the flow in the regionσ(x) >
0, whichwe call the upper flow, and use ∂t− to denote the Lie oper-
ator along the flow in the region σ(x) < 0, which we call the lower
flow. For brevity we write ∂t± in formulae that hold for both ∂t+
and ∂t− , while the symbols ∂t+∂t− and ∂2t+ = ∂t+∂t+ , for example,
denote second derivatives. The gradient operator is denoted by ∂x.

Let us combine ∂t+ and ∂t− into a single time derivative
operator,

∂tλ := λ∂t+ + (1 − λ)∂t− , (1)

and write:

Definition 1. The time derivative operator along a piecewise
smooth flow is given by

d
dt

:=

∂tλ : λ ∈ Λ(x)


, Λ(x) :=

1 if σ(x) > 0,
[0, 1] if σ(x) = 0,
0 if σ(x) < 0.

(2)

This operator generates a piecewise smooth flow whose vector
field dx/dt is equal to ∂t+x for σ > 0, ∂t−x for σ < 0, and is set-
valued where σ = 0. Following the definition proposed by Filip-
pov [7], we can say:

Definition 2. A trajectory in the piecewise-smooth system gener-
ated by (2) is any absolutely continuous function x(t) : R → Rn

whose derivative belongs to d
dt x(t) almost everywhere.

Although the flow generated by (2) is typically set-valued at
σ = 0, only certain forms of dynamics are possible under
Definition 2. If

(∂t+σ(x))(∂t−σ(x)) > 0 on σ (x) = 0, (3)

then all vectors in d
dt x lie transverse toσ = 0, and the flow is said to

cross the discontinuity surface (see Fig. 3, unshaded region). When
a trajectory x(t) crosses σ = 0, its tangent vector switches from
∂t+x(t) in σ > 0 to ∂t−x(t) in σ < 0, or vice versa. If instead

(∂t+σ(x))(∂t−σ(x)) < 0 on σ (x) = 0, (4)

then the set d
dt x contains a vector, ∂tsx, lying in the tangent space

to the discontinuity surface σ = 0, and given by

∂tsx :=
∂t−σ

(∂t− − ∂t+)σ
∂t+x +


1 −

∂t−σ

(∂t− − ∂t+)σ


∂t−x . (5)

The system then admits trajectories that slide along the disconti-
nuity surface (see Fig. 3, shaded regions), and the corresponding
flow is called a sliding flow. This happens in regions that attract the
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Fig. 3. Dynamics at the discontinuity surface. A convex set d
dt xmade up of vectors

∂tλx = λ∂t+x + (1 − λ)∂t−x interpolates between the vectors ∂t+x (black
arrowheads) of the flow above, and ∂t−x (white arrowheads) of the flow below, the
discontinuity surface. Some trajectories in the flow are shown. If ∂tλx is transverse
to the discontinuity surface, the flow crosses (unshaded). If the set contains a vector
∂tsx tangent to the surface, the flow slides in that direction, in sliding or escaping
regions (shaded).

surrounding flow (when ∂t+σ < 0 < ∂t−σ ), called sliding regions,
where a trajectory x(t)may have tangent vector ∂t+x(t) in σ > 0
or ∂t−x(t) in σ < 0, switching to ∂tsx(t) if the trajectory reaches
σ = 0. Sliding also occurs in regions that repel the surrounding
flow (when ∂t−σ < 0 < ∂t+σ ), called escaping regions, where a
trajectory x(t) lying in σ = 0 may have tangent vector ∂tsx(t),
switching to ∂t+x(t) or ∂t−x(t) at any time and thus departing into
σ > 0 in σ < 0. Since ∂t±σ ≠ 0, the flow takes only a finite
amount of time to reach or depart the discontinuity surface at a
sliding or escaping region.

The flow is tangent to the discontinuity when the normal
components of the velocity vectors, given by ∂t±σ , vanish. Points
of tangency constitute singularities of the flow with respect to its
discontinuity, the most fundamental of which are explored in this
paper.

In the next sectionwe describe the simplest of these tangencies,
the fold, in preparation for ourmain topic, the two-fold,which then
forms the remainder of the paper.

3. Folds

Definition 3. A point x̂where

σ(x̂) = ∂t+σ(x̂) = 0, ∂t−σ(x̂) ≠ 0, ∂2t+σ(x̂) ≠ 0 (6)

defines a fold with respect to the upper flow, and a point x̂where

σ(x̂) = ∂t−σ(x̂) = 0, ∂t+σ(x̂) ≠ 0, ∂2t−σ(x̂) ≠ 0 (7)

defines a fold with respect to the lower flow.

Folds are points of quadratic contact between the discontinuity
surface and the flow from one side of σ = 0 or the other. The con-
ditions in (6) or (7) imply that ∂t+σ or ∂t−σ change sign at the fold.
As a result, recalling the conditions in (3) and (4), folds are typi-
cally boundaries between regions of crossing and sliding/escaping
on the discontinuity surface, as shown in Fig. 4.

Theorem 1. Let the point x̂ = 0 be a fold on a discontinuity surface
σ(x) = 0. Then there exist coordinates x = (x1, x2, . . . , xn) in which
the vector field is given by

d
dt
(x1, x2) =


x2, sgn


∂2t+σ(0)


+ O (|x|)


if x1 > 0,

(sgn [∂t−σ(0)] O (|x|)) if x1 < 0,
d
dt

xi = O (|x|) for i = 3, . . . , n.

 (8)

Proof. Choose coordinates

x1 = α (x) σ (x) , x2 = γ (x) (β (x) σ (x)+ ∂t+σ (x)) , (9)
Fig. 4. Folds are visible or invisible, and separate regions of sliding (SL, shaded)
or escaping (ESC , shaded) from crossing (unshaded). The term visible (or invisible)
identifies a flow curving away from (or towards) the discontinuity surface.

in terms of functions

γ (x) =
1

|∂2t+σ (x) |
,

(α (x) , β (x)) =



γ (x) ,

1
γ
(x) ∂t+γ (x)


if x1 > 0,

1,−
∂t−∂t+σ (x)
∂t−σ (x)


if x1 < 0.

(10)

The quantities ασ and βσ are continuous (since x1 = 0 coincides
with σ = 0), hence the right hand sides in (9) are continuous but
nondifferentiable at x1 = 0. The inequalities in (6) guarantee that
the functions α, β, γ , are finite, and that α and γ are non-zero.
Applying the operators ∂t± from (2) gives

d
dt
(x1, x2) =


x2, sgn[∂2t+σ (x)] + x · ε+ (x)


if x1 > 0,

∂t−σ (x) , x · ε− (x)


if x1 < 0,
(11)

where (omitting the argument x)

ε+
=


∂t+


∂t+γ

γ


−


∂t+γ

γ

2

, 2
∂t+γ

γ
, 0, 0, . . .


,

ε−
=


−γ ∂t−


∂t−∂t+σ

∂t−σ


,
∂t−γ

γ
, 0, 0, . . .


.

We can rescale time by t → t/µ without changing the phase
portrait of the flow, provided µ is strictly positive (this remains
true if µ is only piecewise-smooth, see Appendix B). Let µ = 1 for
x1 > 0 and let µ = |∂t−σ | for x1 < 0, giving

d
dt
(x1, x2) =



x2, sgn[∂2t+σ (x)] + x · ε+ (x)


if x1 > 0,

sgn[∂t−σ (x)], x · ε− (x) /|∂t−σ (x) |


if x1 < 0.

(12)

Taking a series expansion about x̂ = 0 gives the first line of the
theorem,

d
dt
(x1, x2) =


x2, sgn[∂2t+σ(0)] + O (|x|)


if x1 > 0,

(sgn[∂t−σ(0)],O (|x|)) if x1 < 0. (13)

The intersection of the hyperplane x1 = 0 and the hyperplane x2 =

0 is an n − 2 dimensional surface, coordinatized by some x3, . . . ,
xn, that remain to be chosen. We can choose a basis of these coor-
dinates that is normal to the flow at x̂ = 0. Let y3, . . . , yn, be any
n − 2 coordinates orthogonal to x1, x2, then let

xi = yi + αi (x) σ (x)+ ϕ (x) ∂t+σ (x) for i = 3, 4, . . . (14)
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where αi = − (∂t−yi + ϕ∂t−∂t+σ) / (∂t−σ) and ϕ = − (∂t+yi) /
∂2t+σ


. Applying the derivatives ∂t± gives

d
dt

xi =


ε+

i · x if x1 > 0,
ε−

i · x if x1 < 0, + O

|x|2


= O (|x|) (15)

where (again omitting the argument x)

ε+

i =


∂t+αi − (αi + ∂t+ϕ)

∂t+γ

γ
, αi + ∂t+ϕ, 0, 0, . . .


γ ,

ε−

i =


∂t−αi +

(∂t−∂t+σ)∂t−ϕ

∂t−σ
,
∂t−ϕ

γ
, 0, 0, . . .


,

and since d
dt xi = O (|x|), this completes the result (8). �

By the implicit function theorem there exists an open set

{(x1, . . . , xn) : x1 = x2 = 0}

of fold points, in a region around x̂ on which ∂2t+σ(x) and ∂t−σ(x)
remain non-zero. Exploring the permutations of the signs of ∂2t+σ
and ∂t−σ in (8) produces the four topologically distinct cases in
Fig. 4. The sign of ∂2t+σ determines whether the upper flow curves
towards or away from the surface at the fold, and the sign of ∂t−σ
determines whether the lower flow points towards or away from
the surface. The singularity at x1 = x2 = 0 is not a stationary point
of the flow (i.e. d

dt x ≠ 0, or more correctly since (2) is set-valued,
0 ∉

d
dt x).

At the fold, the sliding vectors ∂tsx found using (5) reduce sim-
ply to ∂t+x, and therefore typically passes through the fold in fi-
nite time. The geometry summarized in the expressions above is
not only useful for local dynamics, but has been used to study
global bifurcations by deriving the so-called discontinuitymappings
for sliding bifurcations [17], classifying the topologies of sliding
bifurcations [18,14], and computing invariant manifolds at slid-
ing/escaping boundaries [11,12].

In systems of n dimensions, a pair of n − 2 dimensional fold
sets (one given by each of (6) and (7)) may intersect under generic
circumstances. Since each inhabits the n − 1 dimensional discon-
tinuity surface, such an intersection has dimension n − 3, and is
therefore typical only in n ≥ 3 dimensions. Such an intersection
is known as a two-fold singularity, as explored in the remainder of
this paper. Breaking the inequalities in (6)–(7) permits contact of
higher than quadratic order; we do not explore these here, but for
two or three dimensional flows see [14,3,5].

4. The two-fold

Definition 4. A two-fold singularity is a set of points x̂where

σ(x̂) = ∂t+σ(x̂) = ∂t−σ(x̂) = 0, (16)

subject to three non-degeneracy conditions:

∂2t±σ(x̂) ≠ 0 (17)

∂xσ(x̂), ∂x∂t+σ(x̂), ∂x∂t−σ(x̂) are linearly independent (18)

(∂tλ x̂) · (∂x∂t±σ(x̂)) ≠ 0 ∀λ ∈ [0, 1] (19)

where ∂tλ is defined in (1).

Condition (17) says that tangencies between the discontinu-
ity surface and the flow are of quadratic order, while (18) means
that the pair of folds (one with respect to each of the upper and
lower flows) are transversal. The final condition, (19), means that
all values of the linear combination ∂tλx have a non-zero compo-
nent in the plane of ∂t+x and ∂t−x at x̂. An important consequence
of (18)–(19) is that 0 ∉

d
dt x, so the flow is not stationary at the
singularity, yet how the flow traverses the singularity turns out to
be non-trivial.

The flow curvature with respect to the discontinuity surface is
characterized by two functions

v+(x) :=
∂t+∂t−σ(x)

|∂2t+σ(x)∂
2
t−σ(x)|

&

v−(x) :=
−∂t−∂t+σ(x)

|∂2t+σ(x)∂
2
t−σ(x)|

.

(20)

These are important for classifying all aspects of the local dynam-
ics, and we define their values at the singularity as a pair of con-
stants

ν+
:= v+(x̂) & ν−

:= v−(x̂). (21)

We now introduce our main result.

Theorem 2. On the two-fold normal form. Let the point x̂ = 0 be a
two-fold singularity on a discontinuity surface σ(x) = 0. Then there
exist coordinates x = (x1, . . . , xn) in which the vector field is given
by

d
dt
(x1, x2, x3)

=


−x2,−sgn


∂2t+σ(0)


, ν+


if x1 > 0,

x3, ν−, sgn

∂2t−σ(0)


if x1 < 0,

+


(0,O (|x|) ,O (|x|)) if x1 > 0,
(0,O (|x|) ,O (|x|)) if x1 < 0.

d
dt

xi = O (|x|) for i = 4, 5, . . . , n.


(22)

Proof of Theorem 2. Define coordinates x = (x1, . . . , xn) where
the first three variables are given by

x1 = ασ (x) , x2 = −β (x) ∂t+(α (x) σ (x)),

x3 =
∂t−(α (x) σ (x))

β (x)
,

(23)

where

α = |∂2t+σ∂
2
t−σ |

−1/2, β = |∂2t−σ/∂
2
t+σ |

1/4. (24)

The functions α and β are well-defined because the derivatives
∂2t±σ are nonvanishing by (17), and by (18) the variables x1, x2, x3,
are linearly independent at the origin, and form a valid coordinate
system. The n − 3 dimensional manifold

{(x1, . . . , xn) : x1 = x2 = x3 = 0}

is a two-fold singularity, and the coordinates x4, . . . , xn remain to
be chosen. Before we define those, simply rearranging (23) gives
the dynamics on the first variable,

∂t+x1 = −x2/β (x) , ∂t−x1 = x3β (x) . (25)

Applying the derivative operators ∂t± from (2) to the next two co-
ordinates, x2 and x3, gives (omitting arguments x)

d
dt
(x1, x2, x3) =


−x2,−αβ2∂2t+σ , α∂t+∂t−σ


/β if x1 > 0,

x3,−α∂t−∂t+σ , αβ
−2∂2t−σ


β if x1 < 0,

+


0, x · ε+

2 , x · ε+

3


if x1 > 0,

0, x · ε−

2 , x · ε−

3


if x1 < 0,

(26)



A. Colombo, M.R. Jeffrey / Physica D 263 (2013) 1–10 5
where some rearrangement of derivatives yields

ε+

2 =


αβ∂2t+

1
α
,

1
α2β

∂t+(α
2β), 0, 0, 0, . . .


,

ε+

3 =


−
α

β
∂t+∂t−

1
α
,−

1
αβ2

∂t−α,
β

α
∂t+

α

β
, 0, 0, . . .


,

ε−

2 =


αβ∂t−∂t+

1
α
,

1
αβ
∂t−(αβ),−

β2

α
∂t+α, 0, 0, . . .


,

ε−

3 =


−
α

β
∂2t−

1
α
, 0,

β

α2
∂t−

α2

β
, 0, 0, . . .


,

noting that α, β , and ε±

i are all functions of x. As in the proof of
Theorem 1, we can apply a time rescaling t → t/µ provided that
µ is strictly positive. Letµ = 1/β for x1 < 0 andµ = β for x1 > 0,
given β > 0 by (24). Applying t → t/µ to (26) we then have

d
dt
(x1, x2, x3) =


−x2,−sgn[∂2t+σ (x)], v

+ (x)


if x1 > 0,
x3, v− (x) , sgn[∂2t−σ (x)]


if x1 < 0,

+



0, x · ε+

2 (x) , x · ε+

3 (x)

β (x)

if x1 > 0,
0, x · ε−

2 (x) , x · ε−

3 (x)

/β (x)

if x1 < 0,

(27)

in terms of the functions v± defined in (20), using the fact that α =

1/|∂2t+σ∂
2
t−σ |

1/2, αβ2
= 1/|∂2t+σ |, and αβ−2

= 1/|∂2t−σ | by (24).
Expanding (27) in powers of x1, x2, . . . , xn, about the point x̂ = 0,
the vector field becomes

d
dt
(x1, x2, x3) =


−x2,−sgn


∂2t+σ(0)


, v+(0)


if x1 > 0,

x3, v−(0), sgn

∂2t−σ(0)


if x1 < 0,

+


(0,O (|x|) ,O (|x|)) if x1 > 0,
(0,O (|x|) ,O (|x|)) if x1 < 0. (28)

Finally, the components dxj>3/dt are found as follows. At the point
x̂ inside the two-fold, the flow switches between two directions,
say ∂t+x and ∂t−x evaluated at x = x̂, which by (19) are linearly
independent; let us call these two vectors e+ and e−. Orthogonal
to e+, e−, and ∂xσ , there exist n− 3 mutually orthogonal unit vec-
tors ei, i = 4, . . . , n, which we can take as the bases of coordinates
x4, . . . , xn. Then dxi/dt = 0 at x̂ = 0, and we have

d
dt

xi =


a+

i · x if x1 > 0,
a−

i · x if x1 < 0, + O

|x|2


, (29)

for i = 4, 5, . . . , n, where a±

i are vector constants a±

i = ∂x∂t±

xi|x=0. Since d
dt xi = O (|x|), this completes (22). �

By expanding (23) to give x2 = −βσ∂t+α − βα∂t+σ and x3 =

γ σ∂t−α + γα∂t−σ , we see that the role of x1, x2, x3, is as follows:
the n− 1 dimensional manifold x1 = 0 is the discontinuity surface
where σ = 0, the n−2 dimensional manifold x1 = x2 = 0 is a fold
where σ = ∂t+σ = 0 (see (6)), and the n−2 dimensionalmanifold
x1 = x3 = 0 is a fold where σ = ∂t−σ = 0 (see (7)).

We can solve the normal form system to give:

Corollary 3. Trajectories of (22) are arc segments of the form

x1(t) = x1(0)− tx2(0)+
1
2
sgn[∂2t+σ(0)]t

2
+ O


t3


x2(t) = x2(0)− sgn[∂2t+σ(0)]t + O

t2


x3(t) = x3(0)+ ν+t + O

t2


 (30)
Fig. 5. Two-folds come in three flavours depending on whether the folds that
comprise them are visible or invisible (the top-right and bottom-left cases are
topologically equivalent), as determined by the signs of ∂2t±σ . Regions of sliding (SL,
shaded), escaping (ESC , shaded), and crossing (unshaded) allmeet at the singularity.

for x1(0) ≥ 0 provided x1(t) ≥ 0, and

x1(t) = x1(0)+ tx3(0)+
1
2
sgn[∂2t−σ(0)]t

2
+ O


t3


x2(t) = x2(0)+ ν−t + O

t2


x3(t) = x3(0)+ sgn[∂2t−σ(0)]t + O

t2


 (31)

for x1(0) ≤ 0 provided x1(t) ≤ 0. In both cases we have xi(t) =

xi(0)+ O

t2

for i = 4, 5, . . . , n.

Proof. Expand the trajectories (x1(t), x2(t), . . .) of (22) as a power
series in t , namely xi(t) = xi(0)+ t dxi(0)

dt +
1
2 t

2 d2xi(0)
dt2

+ · · ·, substi-
tuting in drxi/dt r , found from (11), to obtain separate expansions
in x1 > 0 and x1 < 0. These expansions yield (30) and (31) respec-
tively, along with xi(t) = xi(0)+ O


t2

for i = 4, 5, . . . , n. �

In (30)–(31) we express x1(t) to O

t2

, but only express x2(t)

and x3(t) to O (t), for later use: these will be sufficient to obtain
the correct dependence on terms quadratic in x2 and x3 when both
t and x are considered to be small.

In the following sections we explore the classes of behaviour
generated by the normal form (22). The key point to note from
Corollary 3 is that the leading order dynamics of x1(t), x2(t), x3(t),
is independent of the variables x4, x5, . . . , xn, which allows us to
form a classification based purely upon the dynamics of x1, x2, x3.

The variables x4, x5, . . . , xn, do have a role to play, of course,
because they enter into the values of the parameters ν± and
∂2t±σ(0), which depend on the point x̂ = (x̂1, x̂2, . . . , x̂n) at which
the expression (22) is derived. At any given point, the possible
signs of the derivatives ∂2t±σ(0) give one of three topological
flavours of two-fold (Fig. 5), and the values of the parameters ν±

divide these further into dynamical subclasses. Different values
thus determine neighbourhoods of different points x ∈ Rn with
different dynamics, which we describe in Sections 5.1–5.3. The
transition between such regions occurswhere the non-degeneracy
conditions (17)–(19) break down at critical values of ∂2t±σ and ν±,
and this requires study of the higher order terms labelledO (|x|) in
(22). We leave the rich problem of the dynamics arising from these
transitions to further work.

In three dimensions, (22) is equivalent to normal forms for the
two-fold that have appeared previously in [7,4,5] and more re-
cently in [9,10], up to a variety of sign conventions, for which the
result (22) above has the benefit of having a single unified form.
The remainder of this section sets out the principles of sliding and
crossing in the local expression (22).
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4.1. Sliding near a two-fold

The time derivative along the sliding flow on x1 = 0 is obtained
by substituting (22) into (2), giving

∂tsx1 = 0,

∂tsx2 =

ν−x2 − sgn


∂2t+σ(0)


x3

/ (x2 + x3)+ O (|x|) ,

∂tsx3 =

sgn


∂2t−σ(0)


x2 + ν+x3


/ (x2 + x3)+ O (|x|) ,

∂tsxi = O (|x|) , i = 4, 5, . . . , n.

 (32)

The right hand side of (32) is independent of the coordinates x4,
x5, . . .. The dynamics in the x2 and x3 directions is thus given, to
leading order, by the two-dimensional system

∂ts (x2, x3) =
(x2, x3)
x2 + x3

·


ν− sgn

∂2t−σ(0)


−sgn


∂2t+σ(0)


ν+


. (33)

The 2 × 2 matrix in (33) has determinant

D = sgn

∂2t+σ(0)∂

2
t−σ(0)


+ ν+ν− (34)

and trace

T = ν+
+ ν−. (35)

These, and the eigenvectors of the 2 × 2 matrix, are sufficient to
determine the phase portrait of the sliding flow (see for example
[7,10]). Essentially, the factor 1

x2+x3
amounts to a time-scaling, al-

beit one that is singular at the two-fold. Neglecting this factor, the
phase portrait of (33) resembles a simple equilibrium at (x2, x3) =

0, andwill have degeneracieswhere the determinant (34) and trace
(35) vanish. Although the full vector field does not have an equilib-
rium at (x2, x3) = 0 (recall from the paragraph following (19) that
d
dt x = 0 is not a permitted vector there), these still constitute de-
generacies of the piecewise-smooth flow. The complete family of
distinct phase portraits are explored in Section 5. One particular
result will appear repeatedly in Sections 5.1–5.3, given by the fol-
lowing corollary to Theorem 2.

Corollary 4. The determinant (34) is non-zero by condition (19).
Therefore D = 0 constitutes a degeneracy of the two-fold, and cor-
responds to a parameter curve where

D = sgn[∂2t+σ(0)]sgn[∂2t−σ(0)] + ν+ν−
= 0 (36)

subject to

ν−

sgn[∂2t+σ(0)] + ν−
∈ [0, 1] and

sgn(∂2t−σ)

sgn[∂2t−σ(0)] − ν+
∈ [0, 1].

(37)

Proof. To show thisweprove that (19) reduces toD ≠ 0 in thenor-
mal form. Condition (19) means that ∂tλx has a non-zero compo-
nent in the plane of ∂x∂t+σ and ∂x∂t−σ , at x̂, for allλ ∈ [0, 1]. In the
normal form (22) the gradient vectors ∂x∂t+σ and ∂x∂t−σ corre-
spond to the x2 and x3 directions, so (19) states that the second and
third components of ∂tλx = λ∂t+x+(1−λ)∂t−x are non-zero. Eval-
uating these, and eliminating λ, gives sgn[∂2t+σ(0)]sgn[∂2t−σ(0)]+
ν+ν−

≠ 0, which is D ≠ 0 by (34). Solving for λ and substituting
into the requirement λ ∈ [0, 1] gives (37). Thus D ≠ 0 is violated
on a parameter curve ν+ν−

= ±1 from (36), with restrictions on
the signs of ν± as implied in (37). �
Fig. 6. Non-unique histories or futures: a point in the sliding region (SL) can be
reached by many trajectories, while a point in the escaping region (ESC) evolves
into many trajectories.

The sliding and escaping regions (given by (4)) in the normal
form occupy x2x3 > 0 on x1 = 0, implying x2 + x3 > 0 in the
sliding region and x2 + x3 < 0 in the escaping region, in both of
which the system (32) is well-defined. The sliding vector field is
not well-defined at the two-fold singularity itself (nor on the line
x2 + x3 = 0, but this passes through the crossing regions), where
both the numerator and denominator of (32) vanish. So (32) spec-
ifies the sliding flow in the neighbourhood of the singularity, ex-
cepting the singularity itself. What happens when the sliding flow
intersects the singularity is discussed in Section 4.2 below.

4.2. Sliding through a two-fold: canards

What happens if a trajectory satisfying (33) arrives at the sin-
gularity, where (33) is undefined?

The failure of (33) occurs because every vector ∂tλx ∈
d
dt x lies

tangent to the discontinuity surface at the singularity, so none can
be distinguished uniquely as the vector ∂tsx defining a sliding flow.
However, when the genericity conditions (17)–(19) are satisfied at
the singularity, all vectors in the set d

dt x are non-zero. This means
that a trajectory that intersects the singularity must pass through
it in finite time. In doing so the flow passes from the sliding region
to the escaping region, or vice versa. Trajectories consistent with
Definition 2 are formed by concatenating the two flows (similar
to concatenating the upper and lower flows at a crossing region),
with their tangent vectors switching between different values of
∂ts given by (5).

One possibility is then that the flow is conveyed from sliding
to escaping, via the singularity. Such trajectories have been termed
canards [15], borrowing a term from slow–fast systems [19] and in-
spired by the French term ‘canard’, alluding to the counterintuitive
nature of such dynamics. Faux canards are similar but travel in the
opposite, prointuitive, direction, from escaping to sliding regions.

One must then recall that a point in the sliding region can be
reached frommanypoints in the piecewise-smooth flow, including
a unique sliding trajectory xs(t) with tangent vector (33), and a
continuum of trajectories that impact the discontinuity surface
along xs(t) (Fig. 6, left). We say that such a point hasmany possible
histories in the flow. Similarly, a point in the escaping region has
many possible futures, consisting of a unique sliding trajectory
xs(t)with tangent vector (33), and a continuum of trajectories that
depart the discontinuity surface from points along xs(t). The two-
fold singularity compounds this multi-valuedness because it lies
on the boundary of both sliding and escaping regions (Fig. 7).

In Section 5 (Figs. 8–10), two-folds are shown to exhibit differ-
ent canard topologies: there may be no canards (the flow avoids
the singularity), or the family of canards may form either an n − 1
dimensional set (Fig. 7(i)), or an n dimensional set (Fig. 7(ii)). The
latter are robust in the sense that there exist open sets of initial
conditions in Rn whose trajectory intersects the two-fold.

4.3. The crossing map around an invisible fold

If ∂2t+σ(0) < 0 then the fold set σ = ∂t+σ = 0 is invisible, so
the upper flow (30) forms arcs curved towards the discontinuity
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Fig. 7. Simple canards and robust canards from sliding (SL) to escaping (ESC).
Simple canards (left) form an n−1 dimensional set, and robust canards (right) form
an n dimensional set. In any number of dimensions n ≥ 3, the normal formvariables
x1, x2, x3 , follow the phase portraits shown. Examples of the simple canards are
found in Fig. 8(i) and Fig. 9(v–vii), examples of the robust canards are found in
Fig. 9(iii–iv) and Fig. 10(iii).

Fig. 8. The visible two-fold. Left: the discontinuity manifold is partitioned into
sliding (SL) and escaping (ESC) regions (shaded), and crossing regions (unshaded),
bounded by visible folds. Right: the ν± parameter space, showing the transition
curve ν+ν−

= 1, ν± > 0, and inset: phase portraits of the sliding flow, with
different cases: (i) simple canards if ν+ν− < 1 and/or ν+ < 0 and/or ν− < 0;
(ii) robust faux canards if ν± > 0 and ν+ν− > 1. The set-valued velocity vector is
illustrated by a shaded triangle at the singularity.

surface. Similarly if ∂2t−σ(0) < 0 then the fold set σ = ∂t−σ = 0 is
invisible, and the lower flow (31) forms arcs curving towards the
surface.

Each of these induces a returnmap on the discontinuity surface,
found by eliminating t in each system (30) or (31), and seeking the
terminal points of trajectories on x1 = 0. Thus near an invisible
fold, a point

(x1(0), x2(0), x3(0), . . .) = (0, ξ2, ξ3, . . .)

with ξ2 < 0 will map via the x1 > 0 flow (30) according to
ξ2
ξ3


→ B+


ξ2
ξ3


+ O


|ξ|2


, B+

=


−1 0

−2ν+ 1


, (38)

while a point with ξ3 < 0 will map via the x1 < 0 flow (31)
according to
ξ2
ξ3


→ B−


ξ2
ξ3


+ O


|ξ|2


, B−

=


1 −2ν−

0 −1


. (39)

The maps (38) and (39) form the basis of all studies of crossing
dynamics local to a two-fold with invisible tangencies. Their lo-
cal independence of the coordinates ξ4, ξ5, . . . , is key, permitting
a classification to be formed in terms of dynamics in the (ξ2, ξ3)
plane only.

The domains of the two maps, respectively ξ2 < 0 and ξ3 < 0,
overlap in the escaping region ξ2, ξ3 < 0. Also their ranges, respec-
tively ξ2 > 0 and ξ3 > 0, overlap in the sliding region ξ2, ξ3 > 0.
Trajectories switch from one map to the other in the crossing re-
gions ξ2ξ3 < 0: points in ξ2 < 0 < ξ3 lie in the range of (39) and
the domain of (38), while points in ξ3 < 0 < ξ2 lie in the range of
(38) and the domain of (39). The folds lie on ξ2 = 0 or ξ3 = 0, and
are fixed points of the maps (38) and (38) respectively.
Fig. 9. The visible–invisible two-fold. Left: the sliding (SL) and escaping (ESC)
regions (shaded), and crossing regions (unshaded), are bounded by one visible and
one invisible fold. Right: ν± space showing (inset) phase portraits of the sliding flow,
with different cases: (i) no canards; (ii) robust faux canards; (iii–iv) robust canards
whose set-valued flowpasses through only part (iii) or all (iv) of the crossing regions
(dotted); (v–vii) coexisting simple canards and faux canards. The set-valued flow of
the faux canard passes through: the crossing regions in (v), the visible fold in (vi),
and neither in (vii). Transitions between topologies occur along the line ν+

− ν−
=

−2, and in ν+
− ν− < −2 along the curves ν+ν−

= −1, 2ν−(ν+
+ ν−) = −1, and

ν+
= −ν− .

Fig. 10. The invisible two-fold. Left: the sliding (SL) and escaping (ESC) regions
(shaded), and crossing regions (unshaded), are bounded by invisible folds. Right:
the ν± space showing (inset) phase portraits of the sliding flow and the crossing
map, with different cases: (i)–(ii) faux canards and crossing numbers k if ν+ν− < 1
or if ν+ or ν− is positive; (iii) robust canards and infinite crossing numbers if
ν± < 0 < ν+ν−

− 1.

If both folds are invisible, then there exist trajectories of (22)
that wind around the two-fold many times, by switching between
the upper and lower flows, crossing the discontinuity surface at a
sequence of points given by repeatedly applying themaps (38) and
(39) in turn. To study a sequence of such crossings, one has a useful
expression for the 2mth return maps,

(B−B+)m =
sin(2mg)
sin(2g)

B−B+
−

sin(2(m − 1)g)
sin(2g)

I,

(B+B−)m =
sin(2mg)
sin(2g)

B+B−
−

sin(2(m − 1)g)
sin(2g)

I,

where

ν+ν−
= cos2 g (40)

and I is the 2 × 2 identity matrix [16]. The value ν+ν−
= 1 con-

stitutes a degeneracy where the maps B+B− and B−B+ have only
one eigenvalue, equal to unity, and by Corollary 4 this corresponds
to violation of (19) (since if both folds are invisible then sgn[∂2t±

σ(0)]sgn[∂2t±σ(0)] = −1 in (36)).

5. Classification of two-folds

In this section we explore the different classes of two-fold aris-
ing from (22), found by the analysis outlined throughout Section 4.
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We summarize key results known for systems of three dimen-
sions [16,10], showing which aspects of that dynamics are ob-
served in higher dimensions due to the expressions (33)–(39). We
will use the terminology from Section 4.2, that canards are sliding
trajectories that traverse the singularity from sliding to escaping
regions, and faux canards are similar but in the reverse direction.

A vital parameter for determining the behaviour at a two-fold
singularity is the product of the parameters ν+ and ν− defined in
(20). The product ν+ν− appears both in the expressions for sliding
dynamics in (34), and for crossing dynamics in (40). It has a simple
geometrical interpretation: it quantifies the jump in the vector
field at the singularity. It is related to the angle between ∂t+ x̂ and
∂t− x̂, by the equation

ν+ν−
= α

cotφ − cot θ+

cotφ − cot θ−
, |α| = 1, (41)

where φ measures the angle between the folds, and θ± measures
the angles between the vectors ∂t±x and the fold sets {x : ∂t±
σ(x) = σ(x) = 0}. These angles are defined in the plane spanned
by ∂t+x and ∂t−x at the singularity. The term α is +1 if both folds
are visible or both are invisible, and is −1 if they are mixed. For-
mulae in terms of flow derivatives are given in Appendix A. In the
normal form (22) the pair of folds are orthogonal, so φ = π/2 and
the angular jump simplifies to

ν+ν−
= α tan θ−/ tan θ+. (42)

This reduced formula appeared in [9,10]. The topologies of so-
called visible or invisible two-folds (with α = +1) depend on this
parameter alone. We will show that only the mixed case, the vis-
ible–invisible two-fold (with α = −1), demands inspection of ν+

and ν− individually.

5.1. The visible two-fold

If ∂t+σ(0) > 0 > ∂t−σ(0) then the two-fold is the intersection
of a pair of visible folds. In coordinates x = (x1, x2, . . .), to leading
order (22) becomes

d
dt

x =


(−x2,−1, ν+, 0, 0, . . .) if x1 > 0,
(x3, ν−,−1, 0, 0, . . .) if x1 < 0, (43)

which induces a sliding flow on {x ∈ Rn
: x1 = 0, x2x3 > 0} with

vector field (32), which to leading order becomes

∂tsx =

0, ν−x2 − x3, ν+x3 − x2, 0, 0, . . .


/(x2 + x3). (44)

The visible two-fold is the simplest to understand, because the
intersection between the flow and singularity is rather trivial. The
flow curves away from the discontinuity, as seen in the left of Fig. 8,
so that locally trajectories will visit the discontinuity surface at
most once. The sliding and escaping regions contain either canards
or robust faux canards, as shown in the right of Fig. 8. This is found
by straightforward analysis of the sliding vector field ∂tsx above,
see [9,7] for details of the phase portrait in the (x2, x3) plane. The
delimiting case is ν+ν−

= 1 for ν+, ν− > 0 (from Corollary 4).

5.2. The visible–invisible two-fold

If ∂t±σ(0) > 0 then the two-fold is the intersection of a visible
and an invisible fold. In coordinates x = (x1, x2, . . .), to leading
order (22) becomes

d
dt

x =


(−x2,−1, ν+, 0, 0, . . .) if x1 > 0,
(x3, ν−, 1, 0, 0, . . .) if x1 < 0. (45)

This induces a sliding flow on {x ∈ Rn
: x1 = 0, x2x3 > 0} with

vector field (32) which to leading order becomes

∂tsx =

0, ν−x2 − x3, x2 + ν+x3, 0, 0, . . .


/(x2 + x3). (46)
The sliding and escaping regions can contain canards and faux
canards, robust or not, as delimited by the transition curves in
Fig. 9. An explicit derivation of these curves is a straightforward but
lengthy exercise; details are described briefly in [7], and the main
features of the sliding vector field are derived in [9]. We outline
the key points here. Different types of canards can be present in the
sliding and escaping regions, and the type changes alongparameter
curves


ν+ν−

= −1, ν+ < 0 < ν−

and


ν+

− ν−
= −2


, which

correspond to degeneracies associated with the Jacobian of the
numerator of the (x2, x3) part of (46),

J =


ν−

−1
1 ν+


,

(this is just the 2 × 2 matrix in (33) with determinant (34) and
trace (35), in the case of a visible–invisible two-fold). The curve
ν+ν−

= −1 is where the determinant of J vanishes (where (19) is
violated by Corollary 4). The line ν+

−ν−
= −2 is where J has two

identical eigenvalues 1 + ν+. Two further transition curves in the
parameter regime ν+

− ν− < −2 delimit cases where the flow
through the faux canards passes either through the crossing re-
gions, the visible fold, or neither: on the curve 2ν−(ν+

+ν−) = −1
the lower flow (using the map (39)) maps the eigenvector of J as-
sociated with the greatest eigenvalue onto the visible fold; on the
curve ν+

+ ν−
= 0 the lower flow (again using (39)) maps the

eigenvectors of J onto each other.

5.3. The Teixeira singularity

If ∂t−σ(0) > 0 > ∂t+σ(0) then the two-fold is the intersection
of a pair of invisible folds, also known as the Teixeira singularity. In
coordinates x = (x1, x2, . . .), to leading order (22) becomes

d
dt

x =


(−x2, 1, ν+, 0, 0, . . .) if x1 > 0,
(x3, ν−, 1, 0, 0, . . .) if x1 < 0, (47)

and the sliding flow on {x ∈ Rn
: x1 = 0, x2x3 > 0} has vector field

(32) which to leading order becomes

∂tsx =

0, ν−x2 + x3, x2 + ν+x3, 0, 0, . . .


/(x2 + x3). (48)

The invisible two-fold leads to particularly interesting local dy-
namics, because the flow can return to the discontinuity many
times (by repeatedly applying the maps (38)–(39)). Recall from
Section 2 that the discontinuity surface divides into crossing re-
gions given by (3), sliding regions where ∂t+σ < 0 < ∂t−σ and
escaping regions where ∂t−σ < 0 < ∂t+σ .

In [10] it was shown that, in 3-dimensional systems, (47) be-
longs to one of three dynamical classes:

(i) if ν+ > 0 or ν− > 0, there exists a simple faux canard, and be-
tween ejection from the escaping region to impact on the slid-
ing region the flow crosses the discontinuity surface at most
once from σ < 0 to σ > 0 if ν+ > 0, and at most once from
σ > 0 to σ < 0 if ν− > 0;

(ii) if ν± < 0 < 1 − ν+ν−, there exists a simple faux canard,
and between ejection from the escaping region to impact on
the sliding region the flow crosses the discontinuity surface at
least once;

(iii) if ν± < 0 < ν+ν−
− 1, the entire sliding flow consists of ro-

bust canards, and the crossing flow traverses the discontinuity
repeatedly as it tends asymptotically towards and away from
a pair of invariantmanifolds (one attracting, one repelling) ex-
tending from the singularity.

In [16], case (ii) was supplemented with the result that, if ν+ν−
=

cos2 π
k+1 where k ≥ 2 is an integer, then the flow crosses the dis-

continuity exactly k times between ejection from the escaping re-
gion to impact on the sliding region. Moreover, if ν± < 0 and
ν+ν−

= cos2 π
r+1 but r > 1 is not an integer, then between
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ejection from the escaping region to impact on the sliding region,
different parts of the flow cross the discontinuity either k or k + 1
times,where k and k+1 are the integers either side of r . As k → ∞,
the transition curves ν+ν−

= cos2 π
k+1 accumulate onto the partic-

ular curve ν+ν−
= 1. On this curve the non-degeneracy condition

(19) is violated (as in Corollary 4), therefore the leading order ex-
pression (47) is no longer valid.

Originally derived for systems of three dimensions, statements
(i)–(iii) hold generally in higher dimensions because they depend
solely on the leading order part (47) of the full system (22), which
depends only on the (x1, x2, x3) components near the two-fold.
That is, (i)–(iii) apply on a neighbourhood where the conditions
(16)–(19) are satisfied.

A trajectory may of course evolve in such a way that the higher
order terms O (|x|) in (22) become significant. It was shown in [9],
for example, that in case (iii), the effect of higher order terms in
the vector field is to cause the invariant manifolds (straight lines
through the singularity in Fig. 10, inset (iii)) to curve such they
intersect the sliding regions; this effect is significant only near a
bifurcation that occurs at ν+ν−

= 1, and beyond the scope of the
present paper, but worth a brief remark as follows below.

Dynamics at the critical value ν+ν−
= 1 has only been stud-

ied in detail in three dimensions [9], where a bifurcation of the
local flow occurs. By studying the effect of higher order terms as
ν+ν− passes through unity, a stationary point of the sliding flow
was shown to pass through the two-fold, accompanied by the ap-
pearance of a limit cycle, leading under certain conditions to a non-
deterministic kind of chaos. The transition takes the form of the
nonsmooth diabolo bifurcation [10,9], so-called due to the annihi-
lation of an invariant surface resembling a double-cone. The exten-
sion of these particular features to higher dimensions is not known.

6. Concluding remarks

Locally the two-fold singularity comes in three flavours,
depending on the sign of curvature (the visibility) of the flow
on either side of the singularity. Each flavour has a number
of structurally stable subclasses, which are now understood in
considerable detail. A local expansion provides the dynamics in any
class as a flow passes close to a two-fold. By virtue of the local
analysis presented here, the two-fold’s effect on the flow takes
place intrinsically in three dimensions, with higher dimensions
merely decorating the central structure, and weaving together the
different dynamical substructures the flow can exhibit.

This is just the first step in understanding the dynamics of the
two-fold. In higher dimensions the two-fold singularity is a set of
points, in which different subsets may exhibit different classes of
the behaviours shown here. Transitions of the flow between these
classes are expected to result in further novel dynamics, and are
left to future study.

The interplay of crossing and sliding dynamics can lead to some
misunderstanding over the two-fold’s attractive/repulsive proper-
ties. In short, a two-fold singularity is not generally an invariant
set, nor does it contain any stationary points, but forms a bridge
between sliding and escaping. This can create a multi-valued flow,
because points in the sliding region have many possible histories,
while points in the escaping regionhavemanypossible futures. De-
spite this uncertainty, the flow evolves within a well-determined
set, defined by the sliding flowand any canards itmay contain, con-
catenated with the flow outside the discontinuity surface.

Highly degenerate forms of the two-folds occur in systemswith
symmetries. Like the two-fold, these have a long history in nons-
mooth systems [6,8], and remain a subject of current interest, par-
ticularly in electronic control. Typically, in n > 3 dimensions or
when parameters are varied, one can expect the degeneracy con-
ditions (17)–(19) to be violated at certain points, curves, surfaces,
etc., depending on the value of n. For example, an equilibriummay
pass through a two-fold [9,5], a pair of two-folds may collide to
form a fold–cusp [5], two-folds may occur at the intersection of
multiple discontinuity surfaces, and so on, and of such scenarios,
particularly in higher dimensions, little is known.

There has been no study here of global bifurcations. For a flow
that arrives at a two-fold singularity, the kind of local approach
taken here allows global bifurcations to be characterized in terms
of their local interaction with the discontinuity, see for exam-
ple [14]. These form the elements for ongoing study of how specific
global features interact with discontinuities, and a starting point of
the hunt for two-folds in physical systems [20,21,13].
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Appendix A. The angular jump parameter v+v−

From the definition of v± in (20), we have (omitting arguments
x)

v+v−
= −

(∂t+∂t−σ)(∂t−∂t+σ)

|∂2t+σ∂
2
t−σ |

.

Let f ±
= ∂t±x, then from the standard definition of Lie derivatives

we can substitute ∂t± = ∂t±x · ∂x = f ±
· ∂x, and write

v+v−
= −

(f +
· ∂x∂t−σ)(f −

· ∂x∂t+σ)

|(f + · ∂x∂t+σ)(f − · ∂x∂t−σ)|

= −Q+

−
Q−

+
/|Q+

+
Q−

−
| (49)

where Q i
j = f i · (∂x∂t jσ), with i and j denoting the labels + or −.

We will express this in terms of angles between the vectors f ±

and the folds, measured at the singularity. In Rn, we can specify
these angles uniquely (up to factors of 2π ) if we measure them in
the plane spanned by f + and f −. This plane typically intersects the
folds, allowing us to measure angles from the folds to the vectors
f ±. We identify the angle of rotation from f − to f + as positive and
measure all angles in this direction. Let us then define

εj = Q−

j f +
− Q+

j f −, (50)

so that the vector εj lies in the plane spanned by f + and f −, and
also lies in the fold set ∂x∂t jσ = 0 since a short calculation shows
εj · ∂x∂t jσ = Q−

j Q+

j − Q+

j Q−

j = 0. The angle measured from the
fold set ∂x∂t jσ = 0 to the vector f i is then denoted θ ij , where

cos θ ij = (f i · εj)/|f i||εj|. (51)

The angle between the folds is then the difference φ = θ+

+ − θ+

− =

θ−

+ − θ−

− , while the angle between f + and f − is the difference
ψ = θ+

+ − θ−

+ = θ+

− − θ−

− (see Fig. 11).
We can now find the required quantities Q i

j in terms of the an-
gles θ ij . First, calculate

cos θ+

j

cos θ−

j
=
(f +

· εj)/|f +
||εj|

(f − · εj)/|f −||εj|
=

Q−

j |f +
|
2
− Q+

j f +
· f −

Q−

j f − · f + − Q+

j |f −|2
·
|f −

|

|f +|

which, substituting f +
· f −

= |f +
||f −

| cosψ , rearranges to give

|f +
|Q−

j

|f −|Q+

j
=

cosψ cos θ−

j − cos θ+

j

cos θ−

j − cosψ cos θ+

j
.

Using the relations ψ = θ+

+ − θ−

+ = θ+

− − θ−

− we substitute

|f +
|Q−

j

|f −|Q+

j
=

cosψ cos θ−

j − cos(ψ + θ−

j )

cos(ψ − θ+

j )− cosψ cos θ+

j
=

sin θ−

j

sin θ+

j
.
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Fig. 11. Local geometry behind the two-fold angular jumpparameter v+v− as given
by (54)–(55). The angle θ ij between the vector f i and the fold ∂t jσ = 0, the angle φ
between the folds, and the angle ψ between f + and f − . All angles are measured in
the plane spanned by f ± , which lies inside (and in three dimensions is exactly) the
tangent plane to the discontinuity surface σ = 0.

Thus

Q−

+ Q+

−

Q+

+ Q−

−

=
sin θ−

+

sin θ+

+

sin θ+

−

sin θ−

−

.

Using the relations φ = θ+

+ − θ+

− = θ−

+ − θ−

− we substitute

Q−

+ Q+

−

Q+

+ Q−

−

=
sin θ−

+ sin(θ+

+ − φ)

sin θ+

+ sin(θ−

+ − φ)
=

cotφ − cot θ+

+

cotφ − cot θ−

+

(52)

or

Q−

+ Q+

−

Q+

+ Q−

−

=
sin(θ−

− + φ) sin θ+

−

sin(θ+

− + φ) sin θ−

−

=
cotφ + cot θ−

−

cotφ + cot θ+

−

. (53)

Finally then, from (49), measuring angles from to the ‘+’ fold we
have

v+v−
= α

cotφ − cot θ+

+

cotφ − cot θ−

+

(54)

and measuring angles from to the ‘−’ fold we have

v+v−
= α

cotφ + cot θ−

−

cotφ + cot θ+

−

. (55)

The term α is just −sgn[(∂2t+σ)(∂
2
t−σ)], which is +1 if both folds

are visible (Section 5.1) or both are invisible (Section 5.3), and is−1
if they aremixed (Section 5.2). The term φ is the angle between the
folds, and θ ij is the angle of f

i from the ‘j’ fold,measured in the plane
spanned by f + and f −.

Appendix B. Piecewise smooth time rescaling

It is a simple but useful observation that the pattern of trajec-
tories of a smooth system, called its phase portrait, remains un-
changed if we rescale time by a strictly positive function. This
remains true if the time scaling is piecewise-smooth. For com-
pleteness, let us show that applying different, strictly positive, time
rescalings either side of the discontinuity surface, does not alter the
phase portrait at the discontinuity surface itself.

We make a piecewise-smooth time rescaling t → t/µ(x),
where

µ(x) =


µ+(x) if σ(x) > 0,
µ−(x) if σ(x) < 0, (56)
withµ±(x) strictly positive. The time scaling (56) does not change
the phase portrait of the individual subsystems in σ(x) > 0 or
σ(x) < 0, since they are smooth in those regions, so the only pos-
sible change in phase portrait would be on σ(x) = 0. Firstly, the
condition (∂t+σ)(∂t−σ) > 0 for transversality between the con-
vex set d

dt x and the discontinuity is unchanged by the transforma-
tion, which multiplies the left hand side by µ+µ− > 0, therefore
crossing regions are preserved.When (∂t+σ)(∂t−σ) < 0 the flow’s
intersection with σ = 0 is characterized by the sliding flow with
time derivative ∂ts . Substituting t → t/µ into (5), the Lie deriva-
tive transforms as ∂ts → µ′∂ts where

µ′
=
µ+µ−(∂t− − ∂t+)σ

(µ−∂t− − µ+∂t+)σ
=
µ+µ−(|∂t−σ | + |∂t+σ |)

|µ−∂t−σ | + |µ+∂t+σ |
> 0.

The second equality follows because ∂t+σ and ∂t−σ have opposite
signs. Thus (56) scales time in the sliding flow by a strictly positive
constant µ′, so the transformation t → t/µ preserves the phase
portrait of the flow.
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